Ingenieurinformatik

Numerik für Ingenieure

Name		Vorname			Semeste gruppe	er-	Studien- gang	Н	Iörsaal
	Aufgabe 1	Aufgabe 2	Aufgabe 3	Αu	ıfgabe 4	Sı	ımme	No	te
Studienbeginn vor WS13/14 (Kombinationsprüfung) **									
Studienbeginn ab WS13/14 bis WS15/16 **									
Studienbeginn ab SS16 bis WS17/18 (Kombinationsprüfung)									
Studienbeginn ab SS18									

Aufgabensteller: Dr. Reichl, Dr. Küpper, Dr. Jäger-Hezel, Dr. Rapp und Kolleginnen und Kollegen

Bearbeitungszeit: 60 Minuten

Hilfsmittel: - Taschenrechner <u>nicht</u> zugelassen

- PC/Notebook nicht zugelassen

- Sonstige eigene Hilfsmittel sind erlaubt

- Bearbeitung mit Bleistift ist erlaubt

^{**} Die Prüfung ist nur dann gültig, wenn Sie die Zulassungsvoraussetzung erworben haben (erfolgreiche Teilnahme am Praktikum).

Aufgabe 1: (ca. 15 Punkte)

a)	Gegeben ist eine Matrix A, die bereits mit Werten gefüllt ist. Alle Elemente der Matrix sind voneinander verschieden. Die genaue Größe der Matrix ist nicht bekannt, sie besitzt aber mehr als 3 Zeilen und mehr als 3 Spalten. Die Anzahl der Zeilen und die Anzahl der Spalten sind unterschiedlich, die Matrix A ist also nicht quadratisch. Die Matrix A wird als Parameter an eine Funktion maximum übergeben. Diese Funktion bestimmt den Zeilen- und Spaltenindex des größten Elements von A und gibt beide Werte zurück. Schreiben Sie die Funktion maximum. Die MATLAB-Funktionen min und max dürfen dabei nicht verwendet werden.
b)	Wie lautet der Aufruf der Funktion maximum , damit der Zeilen-und Spaltenindex
	des größten Elements der Matrix A, den Variablen zeile bzw. spalte zugewiesen werden?

<u>Au</u>	Aufgabe 2: (ca. 13 Punkte)					
a)	Gegeben ist ein Vektor v , der genau 120 Werte enthält. Der Vektor kann ein Zeilenoder ein Spaltenvektor sein. Schreiben Sie eine Funktion vektor_to_matrix , die aus dem Vektor v eine 10*12 Matrix erzeugt (v wird als Parameter übergeben). Die Elemente von v werden in der Matrix spaltenweise abgelegt. D.h. in der ersten Spalte der Matrix werden die ersten 10 Elemente von v abgelegt, in der zweiten Spalte die Elemente 11 bis 20, usw. Die Matrix wird als Ergebnis zurückgegeben. Die MATLAB-Funktion reshape darf nicht verwendet werden.					
b)	Erzeugen Sie einen Vektor v mit den Werten 1, 2,, 120. Rufen Sie dann die Funktion vektor_to_matrix auf, um eine entsprechende Matrix A zu erzeugen.					

Aufgabe 3: (ca. 18 Punkte)

a)		: 25 erzeugt einen Vektor. Wie lautet die MATLAB- /ektor mit Hilfe der Funktion linspace erzeugt?			
b)) Die MATLAB-Anweisung y=linspace(1,2,11) erzeugt einen Vektor. Wie die MATLAB-Anweisung, die den gleichen Vektor mit Hilfe des Colon-Operato erzeugt?				
c)	Gegeben ist die MATLAB-Anweisung [EV, EW] = eig(A). Wie lauten die MATLAB-Anweisungen, die der Variablen v2 den zweiten Eigenvektor und der Variablen d2 den zweiten Eigenwert der Matrix A zuweisen?				
	v2 =	d2 =			
	Der zweite Eigenvektor der Matrix A wurde Eigenvektor wurde bereits in der Variabler Anweisung, die das Skalarprodukt des zwe und der Variablen sk zuweist?	v3 gespeichert. Wie lautet die MATLAB-			
d)	Gegeben sind zwei Vektoren x und y in einem kartesischen Koordinatensystem im 2 dimensionalen Raum. Aus den beiden Vektoren x und y wird die Größe z=dot(x,y) berechnet. Geben Sie einen Ausdruck an, mit dem der Wert von z ebenfalls berechnet werden kann, ohne die Funktion dot zu verwenden.				

?) _	Wie lauten die MATLAB-Anweisungen um das Integral des Polynoms $y(x)=2\cdot x+3\cdot x^3$ zwischen den Grenzen -5 und 10 zu berechnen und der Variablen z zuzuweisen.				
)	Berechnen Sie das Integral der Funktion $y(x) = 1/(1 + e^{x*x})$ zwischen den Grenzen -1.5 und 2.5. Ergänzen Sie hierzu das Programmgerüst für die Funktion f1. Verwenden Sie dann die Funktion f1 um das Integral zu berechnen und der Variablen z zuzuweisen.				
	<pre>function y = f1(x)</pre>				
	end				
	Der Wert des Integrals wird berechnet und der Variablen z zugewiesen.				

Aufgabe 4: (ca. 11 Punkte)

Berechnen Sie mit Hilfe der MATLAB-Funktion **ode45** die numerische Lösung der logistischen Differentialgleichung:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = K \cdot y(t) \cdot (M - y(t))$$

Die Größen K und M sind konstante Parameter. Zur Lösung der Aufgabe wird ein MATLAB-Skript **dgl.m** erstellt und eine MATLAB-Funktion **fdgl.m** zur Definition der DGL.

a)	Das Skript dgl.m definiert die Parameter K und M, die auch von der Funktion fdgl verwendet werden. Der Parameter K besitzt den Wert 0.3, der Parameter M den Wert 5.0. Die Anfangsbedingung lautet y(t=0)=0.2. Die Lösung wird im Bereich von 0 bis 10 berechnet. Danach wird die Lösung gezeichnet, wobei eine Strichstärke von 2 verwendet wird. Schreiben Sie das zugehörige MATLAB-Skript.
b)	Schreiben Sie die Funktion fdg1 zur Definition der DGL.

Aufgabe 5: (ca. 10 Punkte)

Mit Hilfe von Simulink soll die Lösung der logistischen Differentialgleichung im Intervall [0, 10] berechnet und graphisch dargestellt werden.

$$\frac{dy}{dt} = K \cdot y(t) \cdot (M - y(t))$$

Der Parameter K besitzt den Wert 0.3, der Parameter M den Wert 5.0. Die Anfangsbedingung lautet y(t=0)=0.2. Die graphische Ausgabe soll die Größe y zeigen. Es dürfen nur folgende Simulink-Blöcke verwendet werden:

_	arter har tolgenae simalink blocke verwenaet werden.						
	$\left\langle \frac{1}{s}\right\rangle$	Integrator	⟨ √1 ⟨	Gain			
	>	Scope	1	Constant			
	+	Subtract-Block am Ausgang wird die Differenz der Eingangs- größen ausgegeben	x k	Product			

Zeichnen Sie die notwendigen Blöcke (Blöcke dürfen auch mehrfach verwendet werden) und den Signalfluss zur Lösung obiger Aufgabe. Kennzeichnen Sie, welche Werte in den Constant und Gain-Blöcken eingetragen werden müssen.