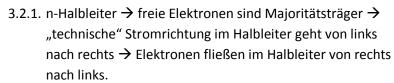
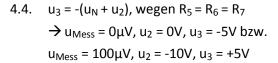
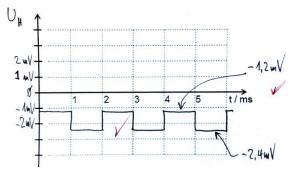

Elektronik (FA, 2. Semester), Ergebnisse

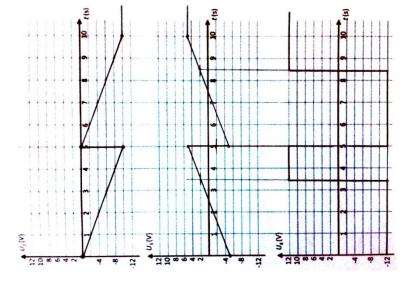

SS 2011

- 1.1. $R_{Pt20} = 50\Omega$; $R_{Pt150} = 75,415\Omega$ 1.2. MOSFET, N-Kanal, Anreicherungstyp
- 1.3. Schnitt mit der y-Achse bei 0,25A und mit der x-Achse bei 5V
- 1.4. Es fließt kein Gatestrom, R_V und R_{Pt} bilden einen unbelasteten Spannungsteiler: $U_{Gs20} = 2,5V$; $U_{Gs150} = 3V$
- 1.5. $U_{DS20} = 4,65V \rightarrow U_{A20} = 5V 4,65V = 0,35V$; $U_{DS150} = 3,75V \rightarrow U_{A150} = 1,25V$
- 1.6. $I_V = 50 \text{mA} \rightarrow P_{Verl} = 0,125 \text{W}$; der Sensor erwärmt sich dadurch etwas und verfälscht das Messergebnis.
- 1.7. Die Gate-Elektrode ist durch eine Oxidschicht vom restlichen Bauelement isoliert.
- 1.8. Gate wirkt wie ein Plattenkondensator → frequenzabhängiger Ladestrom
- 2.1. $G = 1 + R_V/r_Z = 6 \rightarrow R_V = 35\Omega$
- 2.2. G = 6 bedeutet: Wenn U_E um 6V steigt, vergrößert sich U_A um 1V (aber nur im Durchbruch!)
- 2.3. $P_{Ver} = 0.4W = U_{Zmax} I_{Zmax} = (U_{Z0} + I_{Zmax} r_Z) I_{Zmax}$ Dies führt zu einer quadr. Gleichung für I_{Zmax} , die Lösung mit der pq-Formel ("Mitternachtsformel") ergibt $I_{Zmax} = 67mA$; $U_{Amax} = 5.969V$
- 2.4. Hinweis, Druckfehler in Aufgabenstellung, es muss heißen: den $\underline{\text{maximalen}}$ Widerstand R_L ...

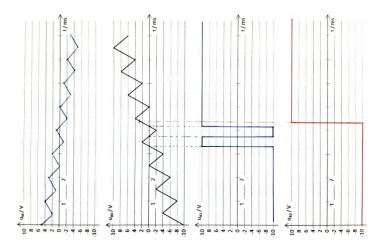

- $I_{Ges} = (10 5,969)V / 35\Omega = 115,2mA; I_L = (115,2 67)mA = 48,2mA; R_{Lmax} = 5,969V / 48,2mA = 124\Omega$
- 3.1.1. $N_D = 11 \cdot 10^{15} \text{cm}^{-3}$; $N_A = 5 \cdot 10^{15} \text{cm}^{-3}$; $n_0 = 6 \cdot 10^{15} \text{cm}^{-3}$; $p_0 = 3.75 \cdot 10^4 \text{cm}^{-3}$; $n_0 = 1 / (e n_0 \mu_0) = 0.7716 \Omega \text{cm}^{-3}$
- 3.1.2. Durch die Erwärmung steigt n_i stark an und "zieht" sowohl n_0 als auch p_0 mit nach oben. Bei der Berechnung der Leitfähigkeit müssen daher sowohl n_0 als auch p_0 berücksichtigt werden! $1/p = e(n_0 \mu_0 + p_0 \mu_0); n_0 = p_0 + N_D - N_A;$ zweite Gleichung in erste Gleichung einsetzen und nach p_0 auflösen

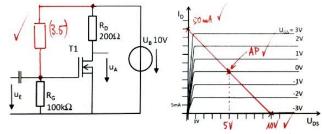
 \Rightarrow p₀ = 2,396·10¹⁵ cm⁻³; n₀ = 8,396·10¹⁵ cm⁻³; n_i = 4,485·10¹⁵ cm⁻³

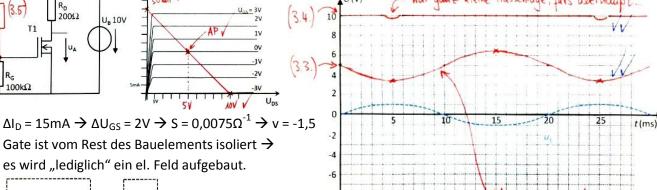




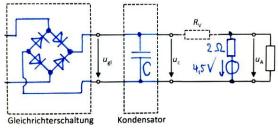
- 3.2.4. Messung von Magnetfeldern, Drehzahlmessung usw...
- 4.1. Nichtinv. Verstärker; $u_1 = 100 u_{Mess}$
- 4.2. Inv. Verstärker; $u_2 = -1000 u_1$
- 4.3. v₁₂ = 100 · (-1000) = -100.000; Nachteil: u_{Mess} ist nun direkt am nichtinvertierenden Verstärker angeschlossen.
 Dieser besitzt einen relativ geringen Eingangswiderstand, u_{Mess} wird deutlich stärker belastet als zuvor und ggf. verfälscht.

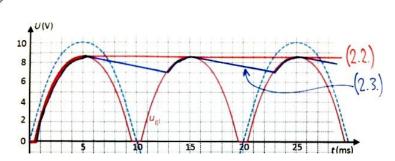

4.5. Komparator mit Hysterese: $u_4 = \pm 12V$, Umschaltpunkte bei $\pm 12V \cdot R_8/R_9 = \pm 2V$




WS 2011/12

- V_2 ist ein invertierender Verstärker (V_1 ist Impedanzwandler) $\rightarrow u_{A0} = -2 u_{M}$ 1.1.
- 1.2.
- V₄ ist ein Komp**a**rator mit Hysterese, Umschaltpunkte bei ±3V Bei einfachen Komparatoren kann es zu unerwünschten 1.4. "Mehrfachübergängen" kommen (u_{A1} in 1.3...!).
- Anschluss eines Sensors mit hoher Ausgangsim-1.5. pedanz (kann keinen Ausgangsstrom liefern) an Verstärker mit geringer Eingangsimpedanz.
- Idealer OPV: (1) Leerlaufverstärkung $\rightarrow \infty$, (2) 1.6. Eingangsimpedanz $\rightarrow \infty$, (3) Ausgangsimped. = 0
- 2.1.1. C, B, E sind hier n-, p-, n-dotiert → npn-Transistor
- 2.1.2. Störstellendichte überall \rightarrow $n_i \rightarrow n_i$ darf vernachlässigt werden, "quadratische Gleichungen" nicht nötig; Kollektor: $n_0 = 10^{14} \text{cm}^{-3}$; $p_0 = 2,25 \cdot 10^6 \text{cm}^{-3}$; Basis: $p_0 = 4.9 \cdot 10^{15} \text{cm}^{-3}$; $n_0 = 4.59 \cdot 10^4 \text{cm}^{-3}$; Emitter: $n_0 = 9,951 \cdot 10^{17} \text{ cm}^{-3}$; $p_0 = 2,261 \cdot 10^2 \text{ cm}^{-3}$


- 2.1.3. $\rho_F = 4,652 \cdot 10^{-5} \Omega \text{m}$; $R_F = 2,3\Omega$ $2.1.4.\ U_F = 46,5mV$
- Der Großteil der Majoritätsträger aus dem Emitter soll durch die Basis hindurch zum Kollektor diffundieren. 2.2. Wäre die Basis zu dick, würden diese Ladungsträger bereits in der Basis rekombinieren.
- 2.3.1. R_{Eext} dient zur Stabilisierung der Schaltung (zum Beispiel) gegen Temperaturschwankungen.
- 2.3.2. R_{Eext} würde ohne C_E den Verstärkungsfaktor verringern. Das Nutzsignal kann über C_E an R_{Eext} vorbei fließen.
- Temperaturerhöhung auf >150°C bewirkt massive Generation von Ladungsträgerpaaren. Es verschwinden die Unterschiede zwischen p- und n-Bereichen, die für die Funktion des Bauelements wichtig sind.



Gate ist vom Rest des Bauelements isoliert → 3.7. es wird "lediglich" ein el. Feld aufgebaut.

3.2.

- 4.1. Beide Halbwellen der Eingangsspannung werden ausgenutzt → B2-Schaltung
- Spg. an R_L max. 8,6V, min. 7,0V \rightarrow Mittelwert 4.3. 7,8V; Formel für B2-Schaltung (nicht mit M1 verwechseln...!!) aus Skript ergibt C = 2,44mF
- $I_{ges} = I_Z + I_L \rightarrow (u_C u_A)/10\Omega = (u_A 4.5V)/2\Omega + u_A/20\Omega \rightarrow u_{A8,6} = 4.78V, u_{A7,0} = 4.54V$ 4.4.
- $G = \Delta u_F/\Delta u_A = (8,6-7,0)/(4,78-4,54) = 6,5$ 4.5.